Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean
نویسندگان
چکیده
[1] Surface waters in upwelling regions are thought to be nutrient rich and hence inhibit nitrogen fixation (diazotrophy) because diazotrophs can preferentially assimilate nitrate and ammonia instead of expending energy to fix dinitrogen. We found average nitrogen fixation rates to be two to seven times higher in the surface waters of the upwelling region of the eastern equatorial Atlantic than typically measured here during non-upwelling periods. We posit that in this region, low nitrate-phosphate ratio waters are upwelled, and an initial bloom of non-diazotrophic phytoplankton removes recently upwelled nitrate. Thereby, diazotrophy is fuelled by residual phosphate and by a combination of aeolian and upwelled sources of iron. Annually, we estimate that approximately 47 Gmol of new nitrogen is introduced by diazotrophy in upwelled waters alone and 195 Gmol N is fixed in the equatorial Atlantic region. Our findings challenge the paradigm that the highest nitrogen fixation rates occur in oligotrophic gyres and instead provide evidence of its importance in upwelling regimes where phosphateand iron-rich waters rich are upwelled. Citation: Subramaniam A., C. Mahaffey, W. Johns, and N. Mahowald (2013), Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean, Geophys. Res. Lett., 40, doi:10.1002/grl.50250.
منابع مشابه
Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle
[1] The Silicic Acid Leakage Hypothesis (SALH) suggests that, during glacial periods, excess silicic acid was transported from the Southern Ocean to lower latitudes, which favored diatom production over coccolithophorid production and caused a drawdown of atmospheric CO2. Downcore records of Th-normalized opal fluxes and Pa/Th ratios from seven equatorial Atlantic cores were used to reconstruct...
متن کاملTropical Atlantic variability in a coupled physical–biogeochemical ocean model
A three-dimensional ocean biogeochemical model of the tropical Atlantic Ocean was run for more than half a century (1949–2000) in order to characterize the ocean biogeochemical response to variable forcing over this period. The seasonal cycle in the equatorial upwelling zone agrees reasonably well with observations and other published simulations but underestimates phytoplankton biomass under s...
متن کاملAn iron curtain in the Atlantic Ocean forms a biogeochemical divide.
The concept of biogeochemical provinces in the ocean was implicit in Longhurst’s (1) classic monograph, Ecological Geography of the Sea. Longhurst identified distinct oceanic zones based on the relationships of oceanic biology (using chlorophyll, a proxy for phytoplankton biomass, and primary production) to physical forcing (e.g., surface currents, mixing depth, and upwelling). As we have advan...
متن کاملSome Overlooked Features of Tropical Atlantic Climate Leading to a New Niño-Like Phenomenon*
The Atlantic Niño, an equatorial zonal mode akin to the Pacific El Niño–Southern Oscillation (ENSO), is phase-locked to boreal summer when the equatorial easterly winds intensify and the thermocline shoals in the Gulf of Guinea. A suite of satellite and in situ observations reveals a new mode of tropical Atlantic variability that displays many characteristics of the zonal mode but instead peaks...
متن کاملInferring upwelling rates in the equatorial Atlantic using Be measurements in the upper ocean
Ocean upwelling rates are difficult to measure because of the relatively small velocities involved, and therefore are typically inferred from indirect methods such as heat budget estimates or tracer observations. Here we present the first results using a novel technique, based on the isotope Be, to infer rates of upwelling along the equator. Beryllium-7 (half-life1⁄453.3 d) is a cosmic-ray prod...
متن کامل